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APOLLO AFTERBODY WITH AND WITHOUT 

W T  SHIELD ABLATIO@ 

By Layton Yee 
Ames Research Center 

Afterbody heat- t ransfer  r a t e s  t o  Apollo-shaped models at 0’ angle of 
a t tack  were measured i n  a b a l l i s t i c  range by means of a passive telemetry 
technique. The measurements were made on small gun-launched models with 
ablat ing as w e l l  as nonablating nose caps. The measured heat- t ransfer  r a t e s  
are compared with wind-tunnel &d shock-tunnel data obtained on sting-mounted 
models. cg-‘& , 
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INTRODUCTION 

While l i t e r a t u r e  i s  readi ly  avai lable  on heat t r ans fe r  t o  stagnation 
points  of spherical ly  nosed vehicles, comparatively l i t t l e  information i s  
available on heat transfer t o  afterbodies, such as the  conical surface of the 
Apollo command capsule, 
Apollo afterbody heating, bu t  these measurements were invariably made on mod- 
els which were supported by s t ings,  whose influence on the  flow f i e l d s  w a s  not 
determinable. Moreover, it i s  expected tha t  ablation products from the  nose 
cap might a f fec t  t he  afterbody heat- t ransfer  ra tes .  I n  the  l i g h t  of these 
points,  then, the  present investigations were conducted. The data presented 
herein a re  the  r e s u l t s  of one approach t o  measuring, i n  f r e e  f l i g h t ,  the  
afterbody heating r a t e s  on Apollo-shaped models with ablat ing as well  as non- 
ablat ing nose caps. The t e s t s  were made in  the p i l o t  range of  t he  Hypersonic 
Free-Flight Branch, Ames Research Center. 

Some experimental studies have indeed been made on 

SYMBOLS 

a speed of sound, f t / s e c  

cp’ spec i f ic  heat at  constant pressure, Btu/slug OF 

D model diameter, f t  

H enthalpy, Btu/slug 
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thermal conductivity, Btu/sec f t  OF 

Mach number, V / a  

mass-loss r a t e  due t o  ablation, s lug/f t2  see 

Prandtl  number, cpp/k 

pressure, lb / f t2  

heat -transf er rate, Btu/f t2 see 

maxim cross-sectional radius of model, f t  

Reynolds number based on diameter, pwVwD/cl, 

local Reynolds number, peVeS/p, 

surface distance measured f rom stagnation point, f t  

l oca l  Stanton number, h/cpPeVe 

velocity, f t / s e c  

angle of attack, deg 

density, s lug/f t3  

viscosity,  slugjsec f t  

Subscripts 

b base conditions 

e edge conditions 

S stagnation conditions 

03 free-stream conditions 

APPARATUS 

The apparatus used i n  the  present t e s t s  w a s  adapted from a passive t e l ea -  
e t r y  system developed and used previously t o  measure stagnation-point heating 
r a t e s .  The technique, described f u l l y  i n  reference 1, involves the  launching 
of a small saboted model i n t o  a b a l l i s t i c  range with a l ight-gas  gun of the 
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description of the  system i s  included in  subsequent paragraphs; and re f ine-  
ments and differences i n  procedure a re  noted. 

The design of the  model i s  shown i n  f igure  1. The temperature-sensing 
element o f  the  model i s  an annular copper-constantan thermocouple formed by 
the copper r ing  soft-soldered t o  t he  constantan disk. A four-turn copper w i r e  
c o i l  i s  soft-soldered t o  the  constantan disk near i t s  center t o  form the cold 
junction and t o  a point on the copper r ing  t o  complete the  e l e c t r i c a l  c i r c u i t .  
Three d i f fe ren t  nose-cap materials were used: aluminum t o  measure afterbody 
heat t r ans fe r  i n  the  absence of  ablation, and two p l a s t i c  materials,  nylon and 
Lexan, t o  observe any e f f ec t  on the afterbody heat t r ans fe r  due t o  ablat ion of 
the  forebody. 
exposed t o  the  afterbody flow, the boron n i t r i d e  should not begin t o  ab la te  
because of  i t s  high working temperature (1800' F) and the  short  t e s t  duration 
( 3  mill iseconds).  Because the  annular thermocouple of the  model may not be 
heated uniformly, a simple bench t e s t  of a simulated annular thermocouple w a s  
devised f o r  determining the  ac tua l  temperature "read" by the  thermocouple; and 
it w a s  found t h a t  an annular thermocouple reads a temperature tha t  i s  between 
the  highest  and the  lowest ,  though not necessarily the  average temperature. 
This cha rac t e r i s t i c  of  an annular thermocouple i s  not important i n  the present 
t e s t s  because the  models flew at essent ia l ly  0' angle of a t tack  so t h a t  any 
temperature gradient along the  periphery of the thermocouple should be 
negl igible .  

Although the  boron n i t r i d e  forward of  t he  calorimeter i s  

The experimental setup i s  shown schematically i n  f igure  2.  The l i g h t  
screen, short  -duration spark, and electronic  timer are  the ubiquitous in s t ru -  
mentation f o r  b a l l i s t i c  ranges. The pickup c o i l  i s  a hOO-turn, centertapped, 
single-layer c o i l  wound on a 4-inch-diameter f iberg las  form. 
shielding i s  incorporated i n  the c o i l  form t o  minimize spurious e l e c t r o s t a t i c  
s ignals .  
nected between the  centertap and one end of  the c o i l .  
analyzer w a s  used f o r  determining experimentally the requirements f o r  c r i t i c a l  
damping. The frequency response of the  damped c o i l  i s  f l a t  t o  about 
180 kc/sec. 
oscil loscope t r iggered  from an uprange spark source. Five shadowgraph s t a -  
t ions  and 12 pickup c o i l s  were used t o  record the  data.  

E lec t ros ta t ic  

The pickup c o i l  i s  c r i t i c a l l y  damped with a 3900 ohm resis tor  con- 
A frequency spectrum 

The s ignal  f rom the  model i s  recorded on a d i f f e ren t i a l  input 

A s  the  annular copper-constantan thermocouple i s  heated during the  
model's f l i g h t ,  a po ten t i a l  difference ex i s t s  between the  heated junction and 
the  cold junction inside the  model. 
c o i l  produces a magnetic f i e l d  the strength of which i s  proportional t o  the  
temperature r ise  of t he  hot junction. 
cg i l ,  t he  magnetic f i e l d  surrounding the  model induces a voltage on the  pickup 
c o i l .  
c o i l  configurations, model velocity, and other known conditions o f  the  t e s t .  
The temperature r i s e  of t he  hot junction on the  model can thus be determined; 
A d  f r o m  successive measured temperature r i ses ,  the heat- t ransfer  rates t o  the 
model can be computed. 
The di2turbances on e i the r  s ide of the  signal a re  caused by the  discharges of 
t he  spark sources immediately uprange and immediately downrange of the  pickup 

The resu l t ing  current flowing through the  

When the model f l i e s  through a pickup 

The amplitude of t h i s  s igna l  voltage i s  r e l a t ed  t o  thermocouple emf, 

A typ ica l  oscilloscope record i s  shown i n  f igure  3.  
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co i l .  
necessary equations a re  discussed i n  detai l  i n  referengG.1. 
t r i e s  of the pickup c o i l  and the  model c o i l  a re  the  same as those i n  r e f e r -  
ence 1, the equations and curve of reference 1 perfaifii'ng t o  mutual inductance 
between pickup c o i l  and model c o i l  a re  va l id  f o r  the present t e s t s .  

P;g;eCMi& f&:the. ~&ta:f&du&& sg1.&1 as th$&rivations of the  
Since the geome- 

TEST CONDITIONS 

0 
The t e s t s  were a l l  made in  room temperature (80 F) air a t  50-mm Hg pres-  

sure.  
and flew with pitching amplitudes of l e s s  than 5'. 
on free-stream propert ies  and diameter w a s  nominally l70,OOO. Temperature 
measurements were made a t  ve loc i t ies  between 16,700 and 18,500 f t / s e c .  
Because the veloci ty  of 17,500 f t / s e c  is common t o  a l l  the  t e s t s ,  it w a s  used 
i n  the data reduction as the  comparison veloci ty .  I n  the  ac tua l  reentry of 
t h e  Apollo capsule, the  Reynolds number based on diameter and free-stream 
properties at m a x i m u m  heating, on undershoot and overshoot entry boundaries, 
i s  between l30,OOO and 780,000 and veloci ty  between 34,600 and 33,400 f t / s ec ,  
depending upon the reentry angle. Since ablat ion temperature f o r  the  p l a s t i c  
cap models i s  a t ta ined  within a foot  of the  muzzle of the  gun, it i s  assumed 
t h a t  steady-state ablat ion has been established by the  time the  model reaches 
the  f i r s t  c o i l  s ta t ion ,  about 13-feet downrange of the muzzle. 

The models were launched a t  bet ter  than 18,000 f t / s e c  muzzle veloci ty  
The Reynolds number based 

Because of the l o w  ambient density of the present t e s t s ,  t he  shadowgraphs 
show no flow d e t a i l  whatsoever. 
details  w a s  obtained a t  higher density i n  another f a c i l i t y  having more sensi-  
t i v e  photography. 
follows: 
The afterbody flow i s  c l ea r ly  separated. Since the  present t e s t  conditions 
give a considerably lower Reynolds number, it i s  reasonable t o  assume t h a t  the  
afterbody flow on the  present models i s  a lso separated. 

However, a shadowgraph showing some f l o w  

It i s  reproduced i n  f igure  4. The t e s t  conditions a re  as  
p, = 100 mm Hg. V, = 19,830 f t / s ec ,  M, = 17.6, ReD = 506,000, and 

The models i n  f l i g h t  a re  subjected t o  both convective and rad ia t ive  heat-  
ing, the l a t t e r  f rom the a i r  and ablat ion gases t h a t  are heated t o  a luminous 
condition in  the flow f i e l d  around the  model. However, measurements and ca l -  
culations have indicated t h a t  t he  l eve l  o f  rad ia t ive  heating on the  afterbody 
i s ,  a t  the  model scale  employed here, about t w o  orders of magnitude smaller 
than the convective. Hence, t he  data may properly be analyzed on the  assump- 
t i o n  tha t  only convective heating i s  present .  
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Velo c i t y  , 

F i r s t  c o i l  L a s t  c o i l  

Nose -cap ft/sec 
material 

2024-T4 A 1  17 , 500 16,600 

2024-Tk Al 18,230 17,180 

2024-T4 A 1  18,000 17,070 

Lexan 17,840 16,670 

Nylon 17,940 16,700 

Nylon 18,550 17,020 

Nylon 18,410 17,090 

Lexan 18,420 17,040 

2024-T4 A 1  18,120 17,140 

The r e s u l t s  of the present t e s t s  are tabulated below: 

~ ~~ 

0.035 

.029 

,026 

.017 

.034 

.014 

.014 

.013 

.013 

Test parameters 
calculated 

at 17,500 f t / s e c  

H, = 2x105 Btu/slug 
is = 8,100 Btu/sec f t 2  

A theo re t i ca l  cold-wall stagnation-point heat- t ransfer  r a t e ,  calculated by the  
method of  reference 3 with the  velocity gradient determined by the  method of 
reference 4, w a s  used t o  normalize the  experimental afterbody values f o r  both 
the  nonablating and the  ablating models. The experimental heating rates t o  
t he  afterbody of the aluminum nose-capped models (which are not ablat ing a t  
these t e s t  conditions) l i e  between 2-1/2 and 3-l/2 percent of the  calculated 
stagnation-point heating rates. The afterbody heating r a t e s  t o  the ablat ing 
plastic-nosed models a re  about half  those of the  nonablating aluminum-nosed 
models. 
63.7 percent carbon, 9.7 percent hydrogen, 14.2 percent oxygen, and 12.4 per-  
cent nitrogen (based on nylon 6,6) ; and t h a t  f o r  Lexan are: 
carbon, 5 .5  percent hydrogen, and 18.9 percent oxygen (based on bis-phenol-A). 
I n  s p i t e  of t h e  differences i n  atomic consti tuents of the  two p l a s t i c  mate- 
r ials,  no d r a s t i c  difference i n  afterbody heating w a s  observed. The ablat ion 
rate (i) f o r  t he  Lexan models i s  0.058 slug/sec f t2,  calculated by the  method 
of reference 5; and t h a t  f o r  the nylon models i s  0.063 slug/sec f t 2  (see 
r e f .  6 ) .  
p d  0.024 f o r  t he  nylon model. 
used as a basis f o r  comparing the  efficacy of  cooling of material  injected 
in to  the boundary layer,  it i s  not surprising t o  f i n d  tha t ,  i n  view of the  
s imi l a r i t y  of t h e  mass inject ion parameters, t he  heating rates t o  t he  two 
plastic-nosed models are reduced by about the same amount. It should be noted 

The atomic consti tuents (based on atomic weight) of nylon are:  

75.6 percent 

The mass inject ion parameter (A/pwV,) i s  0.022 f o r  t he  Lexan model 
Since the  mass in jec t ion  parameter i s  usual ly  
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surface temperatures remained low. N o  measurements were made using the  ac tua l  
Apollo heat-shield material, which i s  a charring ablator.  Therefore, the  
e f fec t  of ablation on the  afterbody heating of the ac tua l  Apollo capsule, pro- 
tected by a charring ablator,  might be d i f fe ren t  from tha t  observed f o r  the  
present t e s t s . 

Convective-heat-transfer data  can be correlated on a Stanton number ver- 
sus Reynolds number plot ,  as discussed i n  reference 7. 
of  reference 7 i s  reproduced in  f igure  5 with the present data, represented 
by the flagged symbols, added f o r  comparison. 
obtained from reference 8, and loca l  properties,  evaluated a t  the  free-shear  
layer  above the  afterbody and assuming isentropic  expansion and equilibrium 
f low,  were used t o  determine the  Stanton numbers and the Reynolds numbers 
( R e S ) .  The present measurements were made at  a point on the  afterbody 
S/R = 1.67 tha t  i s  s l i gh t ly  d i f f e ren t  from the one used t o  evaluate the  other 
data  S/R = 1.84, but the  comparison i s  s t i l l  va l id  because the  f l o w  a t  these 
two points should not be s ign i f icant ly  d i f fe ren t  a t  0’ angle of a t tack .  
can be seen tha t  the present data  f r o m  the  nonablating nose-capped models cor- 
r e l a t e  well  with the other data, the  bulk of which are from wind-tunnel t e s t s  
of reference 9 and shock-tunnel t e s t s  of reference 10. The remaining data  a re  
from unpublished sources. 
f e r  t o  8, f la t  p l a t e  i n  laminar attached f low according t o  reference 11. The 
dashed l i n e  represents the  average heat t r ans fe r  f rom laminar separated f l o w ,  
which, according t o  reference 12, i s  0.56 of the  laminar attached f l o w  values 
f o r  Pr = 0.72. This prediction i s  i n  fa i r  agreement with the  cor re la ted  
measurements f o r  t h i s  s t a t ion  of the  afterbody. 

The cor re la t ion  p lo t  

g, = 4.7pm, The value of 

It 

The so l id  l i n e  represents the  theory f o r  heat trans- 

CONCLUSIONS 

, 
Measurements of heating r a t e s  on s m a l l  f r ee - f l i gh t  models ind ica te  t h a t  

the afterbody heating r a t e s  t o  Apollo models with nonablating nose caps a re  
about 3 percent of the calculated stagnation-point heating ra tes ,  and the  
heating r a t e s  t o  the  ablating nose-capped models are  about half those of t he  , 
nonablating nose-capped models. The data  f r o m  the  nonablating nose-capped 
models cor re la te  well with other  data  obtained from sting-mounted models when 
compared on a Stanton number versus Reynolds number bas i s .  
dictions of heat t ransfer  i n  two-dimensional separated laminar flow are i n  
f a i r  agreement with the  correlated data. 

Theoretical  pre- 

Ames Research Center 
National Aeronautics and Space Administration 

Mof fe t t  Field,  Calif . ,  Feb. 2, 1965 
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Model weight : - 0.39 
Figure 1. - Passive telemetry model (Apollo reent ry  capsule). 
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Figure 3.- Typical 
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Figure 4.-  Shadowgraph. 
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